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ABSTRACT 
The effect of a horizontal partial porous partition on heat transfer and flow structure in a differentially 
heated square cavity is investigated. While the fluid flow is assumed to be governed by Navier-Stokes 
equations, fluid saturated porous media is assumed to be governed by Darcy's equations. Standard Galerkin 
method of finite element formulation is applied for discretization of the system of equations. The 
non-linearities in the discretized equations are treated with Newton-Raphson scheme. The code developed 
is tested for validation for modified Rayleigh number Ra* up to 400. The code is then applied to a 
differentially heated square cavity with a horizontal partial porous partition. While the thickness of the 
porous partition is found to have appreciable effect on heat transfer and flow field, width of the porous 
partition is found to have insignificant bearing on heat transfer except when the partition is very small 
and compatible to the thickness of the boundary layer developed. During the experimentation Darcy 
number and Rayleigh number are assumed to be constant at 10-4 and 106 respectively. 
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NOMENCLATURE 

C, C* dimensional and dimensionless kP permeability of porous media, 
specific heat, Nu, Nuc Nusselt number, and cold wall Nusselt 

Da Darcy number (kP/H2), 
g acceleration due to gravity, number 
Gr, GrH Grashoff number, Grashoff number p, P dimensional and dimensionless pres-

based on length _ s u r e , 
Pr Prandtl number (= v/α) 
Ra, RaH Rayleigh number and Rayleigh num-

H height of the cavity, ber based on length H (= GrH·Pr), 
k, k* dimensional and dimensionless ther- Ra* modified Rayleigh number 

mal conductivity, (= RaH·Da), 
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tp dimensionless partition thickness, v, v* dimensional and dimensionless kine-
T, TH, Tc dimensional temperature, hot wall matic viscosity, 

temperature and cold wall tempera- μ, μ* dimensional and dimensionless vis-
ture, cosity, 

u, U dimensional and dimensionless velo- ρ, ρ* dimensional and dimensionless den-
cities along x-direction, sity, 

v, V dimensional and dimensionless velo- θ, θH, θC dimensionless temperature, dimen-
cities along y-direction, sionless hot and cold wall tempera-

Wp dimensionless partition width, ture, 
x, y dimensional co-ordinates, ψ, ψ, ψo dimensional, dimensionless and refer-
X, Y dimensionless co-ordinates, ence stream functions, 
Yp location of the partition along Y-

direction. 
Subscripts 

Greek symbols r reference(e.g. reference temperature), 
H hot water 
α, α* dimensional and dimensionless ther- C cold wall, 

mal conductivity, av average (e.g. average Nusselt num-
β coefficient of volume expansion, ber). 
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in tall layers the core region plays an active role in the heat transfer process. Hickox and 
Gartling11 conducted an extensive numerical study on the shallow configuration. Bejan12 

considered natural convection in a porous layer with internal flow obstructions. He considered 
three different kinds of flow obstructions and concluded that a vertical diathermal partition 
reduces by about 50% the heat transfer rate in a convection dominated porous layer. Breton 
et al.13 numerically studied the effect of natural convection in a square cavity with thin porous 
layers on its vertical walls. Instead of solving one set of equations for each region, they combined 
them into a unique set of equations valid at all points. They claimed that as the pore Reynolds 
number is close to one, the inertia effects could be neglected. They have shown that reduction 
of overall Nusselt number increases with Rayleigh number and becomes really significant for 
high Rayleigh numbers corresponding to real applications. They proposed that the thickness of 
the porous layers should be small compared to the fluid boundary layer width in order to have 
significant reduction. Arquis and Caltagirone14 studied a vertical square cavity with a porous 
layer centred or adjacent to a wall, by considering the porous medium as a 'special' fluid by 
solving the same set of equations in the entire domain. The transition from the fluid to the 
porous layer has been achieved by a continuous space variation of permeability and other 
physical properties. Beckermann et al.15,16 numerically and experimentally studied the problem 
of a square cavity with large porous layer which was adjacent to one of the vertical walls or 
adjacent to the horizontal bottom wall. They also combined the governing equations of each 
medium in order to solve only one set of equations for the two regions. In addition, they 
incorporated the Forchheimer extension as well as the Brinkman model to account for inertia 
effects in the porous media. A few words about the use of these models are in order. Beckerman 
et al.15,16 concluded that the effect of incorporation of Brinkman's extension is small compared 
to the Darcy term. Moreover, they also noted that the effect of Forchheimer's extension is 
significant mainly at low Prandtl numbers. Zhang et al.17 utilized the Darcy flow model to 
investigate the thermal insulation effect of a porous screen inside a vertical rectangular enclosure. 
The study shows that there exists a ceiling conductance for the air leakage through the screen 
above which the screen does not cause a significant drop in the overall heat transfer rate. They 
also indicated how the critical conductance can be used to calculate the critical spacing that 
can be tolerated between two consecutive strips in the screen. 
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The present work is dedicated towards investigation of the effect of a horizontal porous 
partition on the heat transfer and the flow structure in a differentially heated square cavity. The 
geometry along with the boundary conditions is shown in Figure 1. The finite element method 
has been used as the numerical tool for the present investigation. 

GOVERNING EQUATIONS 

A comprehensive review of the related works reveal that some of the investigators have chosen 
to use appropriate governing equations for each region while the recent trend is to include the 
Darcy equations in the Navier-Stokes equations13. Beckerman et al.15,16 incorporated the 
Forchheimer extension to account for inertia effects in the porous media. In the present work, 
however, the appropriate governing equations are solved separately for each of the zones, i.e. 
Navier-Stokes equations when the medium is air and Darcy equations when a porous medium 
is encountered. For steady two-dimensional incompressible flow, the following non-dimensional 

quantities have been introduced: 

Substitution of these 

non-dimensional quantities into the Navier-Stokes equations, results in the following forms of 
equations: 

The subscript r refers to the reference quantities (throughout the present work, air has been 
considered as the reference medium and the cold wall temperature is assumed to be the reference 
temperature). The same reference quantities, when applied to the Darcy equations, yields the 
following system of equations, for flow through a saturated porous medium: 

The continuity and energy equations for the porous medium are essentially similar. For air, k* 
is assigned a value of unity since air is assumed to be the reference fluid for the present work. 
So far as the value of k* for the porous medium is concerned, Breton et al.13 noted that the 
average thermal conductivities of important porous materials does not exceed about two times 
the conductivity of air. So, in the present work, the variation of k* is neglected. In the derivation 
of the above formulation, it has been assumed that Boussinesq approximation is valid and within 
the porous zone the fluid is locally in thermal equilibrium with the solid porous structure. 
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SOLUTION METHODOLOGY 

The basic element used for the computations is an eight noded isoparametric quadrilateral one, 
in which quadratic functions are used to approximate the velocity and temperature and linear 
functions for the pressure18. Standard Galerkin formulation has been employed for the 
discretization process. The non-linearities in the discretized equations are treated with the help 
of the Newton-Raphson scheme and the resulting simultaneous equations are solved by using 
a modified version of the frontal solver. The detail has been described elsewhere19. For lower 
values of Rayleigh numbers, no initial guess solutions are necessary while for higher Rayleigh 
numbers, the solution corresponding to a lower Rayleigh number serves as an initial guess. 
Usually five or six iterations are necessary for one step in which Rayleigh number changes from 
104 to 105 or from 105 to 106. Upon convergence the nodal stream function values are obtained 
as a part of the post-processing operation. The nodal values of are calculated by using the 
equation where is the non-dimensional vorticity. 

The formulation part of the Navier-Stokes equation that results in system of equations 
(la)-(ld), has been developed originally by Misra et al.20 for incorporating space variation of 
transport properties. The utility of the formulation has been amply demonstrated20 through the 
study of a conjugate problem. This formulation scheme has been retained and consequently 
applied to the Darcy equations. 

RESULTS AND DISCUSSION 

Finally, we are left with the validation of the code based on (2a) and (2b). Equations (2a) and 
(2b) represent the Darcy's law for flow through a fluid-saturated porous media. The 
state-of-the-art review of the flow through fluid-saturated porous media reveals that there is a 
definite dearth of experimental results and that there is no systematic comparative study of the 

Table 1 Grid independency study of flow through a fluid saturated porous media contained in a differentially heated 
square cavity 

Ra* 

50 
100 
200 
300 
400 

14 x 14 

1.973 
3.091 
4.943 
6.474 
7.802 

14 x 16 

1.975 
3.092 
4.941 
6.464 
7.786 

NuH for mesh sizes 

14 x 20 

1.9746 
3.0913 
4.9367 
6.4522 
7.7647 

14 x 22 

1.9757 
3.0938 
4.9402 
6.4539 
7.7627 

14 x 24 

1.9765 
3.0958 
4.9435 
6.4568 
7.7635 

Table 2 Comparison of hot wall Nusselt numbers with some existing results 

Ra* 

50 
100 
200 
500 

1000 

Present 
work 

1.976 
3.094 
4.940 
8.929 

13.577 

Ni et al.21 

3.103 

8.892 
13.42 

NuH 

Shirolkar 
et al.22 

3.115 
4.976 
8.944 

13.534 

Walker 
et al.23 

1.98 
3.097 
4.89 
8.66 

12.96 

Bejan24 

1.897 
3.433 
6.044 

Horne25 

1.99 

4.89 
8.78 
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available results of flow analysis in a differentially heated square cavity filled with porous media. 
So, an attempt has been made to compare the results obtained from the present work with the 
numerical results of other workers, whenever possible for various modified Rayleigh numbers. 
Table 1 indicates the hot wall Nusselt number values for different mesh sizes and for different 
modified Rayleigh numbers. Throughout this validation the Darcy number is kept constant at 
10-4 and values of Rayleigh numbers are changed in order to obtain the different modified 
Rayleigh numbers. 

Table 2 compares the results of present work with that of several other workers. It may be 
observed from Table 2 that except for the work of Bejan24, the present work is in satisfactory 
agreement with others. This may be due to the difference in boundary conditions assumed by 
Bejan24. 

The results of the numerical experiment on the effect of horizontal thick porous partial partition 
attached centrally to the hot wall of differentially heated square enclosure, on the flow pattern 
and heat transfer are now discussed. The computational domain is shown in Figure 1. The 
experimentation is conducted mainly to find the effect of the thickness of the partition tP and 
the width of the partition WP on natural convection heat transfer. The values of cold wall Nusselt 
number Nuc for different tP and WP is presented in Table 3 for a fixed value of Rayleigh number 
RaH = 106 and Darcy number Da = 10~4. A glance over Table 3 reveals that for constant width 

Table 3 Average cold wall Nusselt number Nuc for different width Wp and thickness tp of the porous partition and 
for RaH = 106, Da = 10 - 4 , Yp = 0.5, Pr = 0.71 

tp as % of 
cavity height 

20% 
10% 
4% 
2% 
1% 
0.5% 

Cold wall Nusselt number Nuc for 

WP = 0.2 

8.166 
8.312 
8.547 
8.645 
8.697 
8.721 

Wp = 0.3 

8.103 
8.298 
8.529 
8.627 
8.680 
8.707 

Wp = 0.4 

8.076 
8.285 
8.517 
8.617 
8.671 
8.692 
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of the partition, thickness of the porous partition has the effect of reducing the cold wall Nusselt 
number Nuc, i.e. thicker the partition less is the value of Nuc. To probe the phenomenon in 
more detail, let us consider two extreme cases of partition thicknesses, i.e. tP equivalent to 0.5% 
and 20% of the enclosure height respectively, for a constant value of partition width WP = 20% 
of the enclosure width. The corresponding streamline and isotherm maps are shown in Figure 
2 and Figure 7. The cold wall Nusselt number Nuc for tP = 0.5% and WP = 20% is 8.721 and 
that for tP = 20% and WP = 20% is 8.166 which is considerably less. A close look on Figure 2 
reveals that the streamline patterns are almost similar to that of a simple square cavity. Since 
the thickness of porous, semi-permeable partition is very less (tP = 0.5% of the enclosure height), 
it offers almost no resistance to the flow. Thus the similarity of the flow pattern with that of a 
simple square cavity without partition is obtained. The flow is symmetrical about a diagonal 
and the isotherm distribution is also symmetrical. The value of the cold wall Nusselt number 
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Nuc, thus may be naturally expected to be very much similar to that of square cavity. We see 
from Table 3, that for tP = 0.5% and WP = 20%, Nuc is 8.721 which is very close to the value 
8.8 found in the bench mark solution for simple square cavity by de Vahl Davis26. This finding 
in turn substantiates the correctness of the present formulation and the corresponding 
development of the code which is already validated. In Figure 7 it is observed that with increase 
in partition thickness, tP, to 20% of the cavity height, the flow is sufficiently obstructed. To 
avoid this restriction, streamlines seem to negotiate with the partition and try to bend to cross 
the partition. The symmetry is thus totally lost in the flow structure. It may be due to the fact 
that there exists pressure difference between the top and the bottom of the partition. The flow 
experiences a negative pressure as it just clears the vertical edge of the partition and bends 
towards left due to the effect of this negative pressure. For a totally non-permeable partition, 
this negative pressure effect plays a more significant role than in the case of a semi-permeable 
partition shown in Figure 7. This is as per the experience of a previous work by the present 
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authors27 in which effect of thick impermeable finitely conducting partition on natural convection 
heat transfer in a differentially heated enclosure are considered. So, in case of a permeable 
partition, the streamlines bend less as they clear the partition. 

The loss in symmetry in streamline mapping in Figure 7, appears to affect the isotherms in 
the same manner. In comparison with Figure 2, isotherms are widely spaced near the partition 
in Figure 7. The symmetry in isotherms near the bottom left hot wall and near the top right 
cold wall is also lost compared to Figure 2. Only the portion of the hot wall which is below the 
partition, seems to be actively engaged in heat transfer in Figure 7 as is evident by the crowding 
of the isotherms beneath the partition. On the other hand, in Figure 2, more than 50% of the 
hot wall is found to be actively engaged in heat transfer. Inside the partition, isotherms are 
found to have a two-dimensional distribution. Figures 3, 4, 5 and 6 show the streamline and 
isotherm mappings for partition thickness tp of 1%, 2%, 4% and 10% respectively. Distribution 
of the temperature gradient along the cold wall (which is equivalent to local Nusselt number) 
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for the different cases of partition thickness tP, is shown in Figure 10. Distribution of vertical 
component of velocity at mid-plane which contains the porous partial partition for the three 
separate cases of partition thicknesses is shown in Figure 14. 

Table 3 also indicates that the width of the partition WP, has almost negligible effect on the 
cold wall Nusselt number Nuc for natural convection in enclosure. For example, for a constant 
partition thickness tP = 4% of the cavity height, the values cold wall Nusselt number Nuc are 
8.547, 8.529 and 8.517 for partition width WP of 0.2, 0.3 and 0.4, respectively. The reason for 
such invariance of Nuc with WP may be sought in the streamline and isotherm mappings of 
these three separate cases in Figures 5, 8 and 9. Comparing Figure 5 for the shortest partition 
with Figure 9 for the widest partition, it is observed that the isotherms mappings in these cases 
are virtually identical. This results in the identical distribution of the temperature gradient along 
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the cold wall (which is equivalent to the local Nusselt number) as observed in Figure 11. The 
little difference in the second decimal place in the values of average cold wall Nusselt number 
Nuc is not reflected in Figure 11 with its present choice of scale factor. A close look in the 
streamline mappings in Figures 5, 8 and 9 reveals that very near to the boundary, the streamlines 
which are having highest velocity, are almost identically oriented and less disturbed by the 
presence of the partition. Thus, high velocity fluids remain in close contact with the active hot 
wall for considerable length of the hot wall. Away from the boundary, streamlines representing 
low velocity fluids are, however, disturbed by the presence of the partition and get distorted. 
But then, this is a low velocity core zone in cavity flow field where thermal stratification has 
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already appeared. So, when the partition is extended to this thermally stratified core zone where 
the streamlines may get disturbed, it affects little on the heat transfer phenomenon and average 
Nuc remains almost unchanged. The validation of the earlier statement that high velocity 
streamlines pass close to the cavity boundary, may be sought from Figure 15 which shows the 
distribution of the vertical component of velocity at mid-plane location of the cavity where there 
is the porous partial partition. Figure 15 shows that for all the three cases of different partition 
width WP, the highest velocity streamlines are contained in a zone within 10% of the cavity 
width. In this connection, it may be noted that there is a second peak of the vertical velocity 
at mid-plane just after the end of the porous partition. While the first peak is due to that portion 
of the flow which is close to the wall and through the porous partition, the presence of the 
second partition may be attributed to that stream which flows past the partition. Since in case 
of impermeable thick partition27, the streamlines have no choice than to clear the partition by 
negotiating it, the fluid remains in contact with hot active vertical wall for a lesser length. Thus 
impermeable partition with poor thermal conductivity, affects in attenuation of heat transfer to 
some extent with increase in partition width. For example, a cavity with an impermeable partition 
made of asbestos sheet (k* = 6.32) and of tP = 4% and WP = 20% has a value of Nuc equivalent 
to 8.091 as found in the earlier work of the present authors27, which is less than 8.547, the value 
of Nuc for partition of similar geometrical configuration but made of porous material. 

CONCLUSION 

So, we see from the present discussion that a sufficiently thick porous horizontal partial partition 
may be effective in attenuation of heat transfer by natural convection in differentially heated 
square enclosure. Although the thickness of the porous partition is found to affect heat transfer 
and flow field in the cavity, width of the partition is found to have negligible effect. Moreover, the 
zone very close to the enclosure boundary, near the vertical walls where the boundary layer is 
formed, is found to be sensitive, since the streamlines with high velocity pass through this zone 
and affects the performance. A partition of width of the order of boundary layer thickness or 
less is expected to have significant bearing on natural convection in a cavity. 
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